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We present here a numerical study of the self-diffusion mechanisms in silicon using a semiempirical
Stillinger-Weber potential to calculate formation and migration energies and entropies. We find that self-
diffusion in bulk Si is mediated by vacancies at low temperature, but that interstitials play a more and more
important role when temperature increases, in agreement with recent experimental data. This behavior is shown
to strongly evolve under biaxial strain ��� which simulates the effect of epitaxial growth of a Si thin film. Our
methodology allows us to classify vacancy vs interstitial self-diffusion within a �T ,�� diagram, which reveals
a transition from vacancy toward interstitial diffusion at low temperature beyond a critical tensile strain which
corresponds to Si/Ge size mismatch.
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I. INTRODUCTION

Intrinsic point defects in silicon have been the subject of
many experimental and theoretical studies from both funda-
mental and technological points of view. Indeed, the pres-
ence of these defects can induce electronic states inside the
band gap, which perturb or enhance the electronic character-
istics of the device depending on that they are mastered or
not. In this framework, a deep understanding of the Si self-
diffusion mechanism, which is essential in the impurity dif-
fusion or the annealing of implantation damages, is required
for the development of process simulators for nano-Si elec-
tronics. To this aim, one has to keep in mind that most Si
materials used in the latter case are thin films, which suffer
various types of strains �e.g., induced by epitaxial growth on
a substrate presenting a large size mismatch�. In that case,
self-diffusion mechanisms are expected to differ from what
they are in bulk Si and it is essential to understand how they
will evolve depending on the sign �tensile, compressive� of
the strain.

Unfortunately, although it is experimentally possible to
detect Si vacancies using EPR or positron-lifetime
experiments,1–3 the situation is worse for Si self-interstitials
which cannot be detected directly. The alternative is then to
rely on numerical simulations to elucidate the atomistic na-
ture of the efficient defects. Thus many theoretical investiga-
tions have been devoted during the last decades to the study
of self-diffusion in bulk silicon using either empirical
potentials4–10 or ab initio methods.11–27

However, in most cases the authors focused on the ener-
getic part of the diffusion coefficient, namely, the formation
and/or migration energies of point defects, only a few of
them considering the formation entropies and diffusivity
prefactors as possible key factors of the self-diffusion pro-
cess. Moreover in the latter case, it is rather difficult to find a
consensus on the formation entropy, which can perhaps be
related to the different methodologies used by the authors to
determine the various contributions. Indeed, only a few stud-
ies have been reported in which all the �energetic, entropic�
contributions to the diffusion coefficient have been calcu-
lated in the framework of the same description of the inter-
atomic interactions. Among them, let us mention the work by

Sinno et al.28 who considered carefully these topics within
Stillinger-Weber �SW� potential29 but did not show the final
result for the self-diffusion coefficient. Finally no theoretical
atomistic study of the influence of stress on these self-
diffusion mechanisms has been performed up to now.

Our goal here is to present a study of the influence of a
biaxial strain, which could mimic the effect of epitaxy for a
thin Si film, on self-diffusion in silicon, using the semiempir-
ical SW potential. To this aim, the paper is organized as
follows. First, we introduce the fundamental concepts of the
self-diffusion and the methods to calculate the physical quan-
tities which govern it. Then we give details on the criteria we
use to choose our potential. In Sec. III, we compare vacancy
and interstitial self-diffusion mechanisms in bulk Si, with
particular emphasis on the influence of temperature on their
respective efficiencies. Finally, in Sec. IV, we use the meth-
odology developed in the previous sections to illustrate the
influence of a biaxial strain on these diffusion mechanisms.
The key point of the paper is then the elaboration of a �T ,��
diagram which allows us to classify vacancy vs interstitial
self-diffusion as a function of temperature �T� and strain ���
and which reveals in particular a transition in the diffusion
behavior beyond a critical tensile strain which corresponds to
Si/Ge size mismatch.

II. SI SELF-DIFFUSION MODEL

Diffusion proceeds through the formation and migration
of defects �def�, the nature of which depends on the material
under consideration. Thus, although the single defect in-
volved in metal diffusion is the vacancy �V�, various types of
interstitials �I� can also play a role in semiconductor diffu-
sion. The most common defects are shown in Fig. 1.

In any case, if one assumes that the different mechanisms
are independent from one another, the global or total diffu-
sion coefficient at temperature T can be written30 as

D�T� = �
def

cdef�T�Ddef�T� = �
def

cdef�T�fdef�T�ddef�T� , �1�

where cdef�T� is the equilibrium concentration of the defect at
temperature T and Ddef�T� is the self-diffusion diffusivity due
to the presence of the defect. The latter can be written as the
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product of the individual mobility of the considered single
defect ddef�T� and the correlation factor fdef�T� which ac-
counts for the fact that successive atom jumps can be related
to one another so that the atoms do not follow a strict uncor-
related random walk but a correlated one. Calculating these
correlation factors is not an easy task because it depends on
the temperature, the diffusion mechanism, and on the lattice
geometry. For diamond-type structures, it is generally as-
sumed that it is equal to 0.5 for a vacancy and to 0.727 for
interstitials.31 In fact, recent calculations performed within a
SW potential showed that it varies for the different types of
interstitials displayed in Fig. 1, and that it is closer to 0.6 for
the dumbbell mechanism which prevails with this potential.8

The method used in this work �see below� will give us di-
rectly diffusivity coefficient due to the presence of the defect
Ddef�T�, whereas a more sophisticated method should be
used to calculate separately fdef and ddef.8,9

In Secs. II A and II B we will define the methodology that
we have followed to calculate each contribution, assuming a
choice of a suited interatomic potential. The strategy that we
have followed to chose the potential will be explained in Sec.
II C.

A. Formation of point defects

The defect formation is a thermally activated process,
which follows an Arrhenius-type behavior

cdef�T� = exp��Sf
def

kB
�exp�−

�Ef
def

kBT
� , �2�

where kB is the Boltzmann constant, �Ef
def is the formation

energy, and �Sf
def the formation entropy.

�Ef
def is the energy required to create the point defect.

More precisely, the vacancy formation energy �Ef
V is the

energy involved when one atom is removed from an initially
perfect crystalline box and placed in a reservoir. Similarly,
the interstitial formation energy �Ef

I is defined as the energy
involved when an atom from the reservoir is added to a per-
fect crystalline box. The atoms in the reservoir are assumed

to have the cohesive energy of the perfect crystal.
The formation entropy �Sf

def refers to the phase-space vol-
ume accessible to the defect. It involves two contributions,
respectively, of configurational and vibrational origins

�Sf
def = �Sf ,conf

def + �Sf ,vib
def . �3�

The configurational part is purely geometrical since it is re-
lated to the number of ways the defect can exist in one par-
ticular lattice site. It is equal to kB ln 3 for a vacancy due to
the three possible orientations made available by Jahn-Teller
effect24 and equal to kB ln 6 for the split interstitial or dumb-
bell �see Fig. 1�.13 However, this does not hold when using
semiempirical potentials, such as the SW potential, which do
not account for Jahn-Teller effect, so that in that case
�Sf ,conf

V =0. In order to be consistent, we will use this zero
value in the following.

The vibrational part of the formation entropy �Sf ,vib
def is

defined and calculated from the same balance as the forma-
tion energy, namely, as the difference in total vibrational en-
tropy between an initially perfect crystalline box and a final
defective one; the removed or added atom being located at a
perfect bulk position

�Sf ,vib
def = �

0

�

�ndef��� − n0����g���d� , �4�

where ndef��� is the total phonon density of states �DOS� of
the defective system, n0��� is the density of states of a per-
fect system having the same number of atoms, g��� the con-
tribution to the entropy of a single mode

g��� =
h�

2T
coth	 h�

2kBT

 − kB ln�2 sinh	 h�

2kBT

� , �5�

and h the Planck constant. The vibrational density of states
n��� is calculated via the dynamical matrix method in the
harmonic approximation �at 0 K�. More precisely, the vibra-
tional frequencies and the corresponding eigenmodes are ob-
tained by diagonalizing the dynamical matrix, first in the
perfect system and then in the one containing a point defect
�vacancy or interstitial�.

The total densities of states can be decomposed into pro-
jected densities of states �PDOSs� or partial site contribu-
tions at site i and direction �,

n��� = �
i,�

3N

ni���� . �6�

In practice, it is sufficient to calculate these PDOSs for
the Zdef sites surrounding the defect which feel its influence.
The vibrational contribution to the formation entropy be-
comes

�Sf ,vib
def � �

0

�

�
i,�

3Zdef

�ni�
def��� − ni�

0 ����g���d� . �7�

A further approximation can be made in the limit of high
temperature where g��� reduces to −kB ln�h� /kBT�. In this
limit a single average Einstein frequency can be used to char-
acterize the perfect system

FIG. 1. Defects in silicon, �a� the single vacancy located on a
single site or �b� split between two sites, and various interstitials �c�
tetrahedral, �d� hexagonal, �e� �110 dumbbell, and �f� �110 ex-
tended dumbbell.
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�̄0 =
1

3Zdef �
i,�

3Zdef

�
0

�

�ni�
0 ���d� , �8�

a different one for the defective system

�̄def =
1

3Zdef �
i,�

3Zdef

�
0

�

�ni�
def���d�

= �̄0 +
1

3Zdef �
i,�

3Zdef

�
0

�

��ni�
def��� − ni�

0 ����d� , �9�

and the formation entropy given by Eq. �7� reduces to a
simple analytical expression

�Sf ,vib
def � 3ZdefkB ln	 �̄0

�̄def
 � 3ZdefkB
�̄0 − �̄def

�̄0 , �10�

which has the advantage to allow guessing the behavior of
this term from the main variations of the local density in-
duced by the presence of the defect, i.e., deformation toward
low or high frequencies depending on the compressive or
tensile stress.

B. Migration of point defects

Migration is also a thermally activated process

Ddef�T� = Dm
def exp�−

�Em
def

kBT
� . �11�

Here �Em
def is the defect migration energy �barrier� and Dm

def

the corresponding prefactor which in the simplest approxi-
mation is directly related to the jump frequency of the defect
from one site to another multiplied by the correlation factor.

1. Static calculation

Concerning the migration energy its calculation is rather
easy once the saddle point has been properly identified. It is
defined as the difference in total energies of a system in
which the defect occupies the saddle point or the stable po-
sitions. However, despite the availability of “static” methods
such as the “nudged elastic band”32 or “activation-relaxation
technique”33 to sample energy barriers and migration paths,
their determination is difficult and computationally expen-
sive when the potential-energy landscape is complex,10,27

which is the case for interstitials since the migration path
contains multiple minima.20

A static determination of the diffusivity or migration pref-
actor Dm

def can be performed using the following expression:

Dm
def = gdeffdefa2�0

def exp	�Sm,vib
def

kB

 , �12�

where �Sm,vib
def is the migration entropy,34,35 a is the cubic

lattice parameter, gdef a geometrical factor, and �0
def is the

average vibration frequency of an atom first neighbor of the
defect. This average frequency accounts for the number of
attempts made by the atom per unit time to cross the barrier
to the vacancy. For the sake of simplicity, we will assume

here that �0
def= �̄def �see Eq. �9��. The geometrical factor gdef

accounts for the number of possible intermediate states be-
tween the initial and final configurations.31 It depends in
principle on the nature of the defect:31,36 it is equal to 1/4 for
point interstitials such as those shown in Figs. 1�c� and 1�d�
and equal to 1/8 both for the vacancy �Fig. 1�a�� and the
�110 extended dumbbell interstitial �Fig. 1�f��.

The migration entropy is defined similarly to the migra-
tion energy, as the difference in entropy between systems in
which the defects occupy stable or saddle-point positions.
The entropic terms can be calculated once again through
Eqs. �6� and �7� from the phonon densities around the defect
in both positions �stable and saddle point� using the numeri-
cal procedure already described. Similarly to the formation
energy, in the high-temperature limit the migration entropy
can be written simply as

�Sm,vib
def � �3Zdef − 1�kB ln	 �̄def

�̄def*

 , �13�

where �̄def� is the average value of the phonon DOS with the
system in the saddle-point position. The factor �3Zdef−1� in-
stead of 3Zdef as in Eq. �10� comes from the existence of an
imaginary frequency in the phonon DOS at the unstable
saddle point. If both average frequencies do not differ too
much, the migration entropy vanishes and a simplified ex-
pression of the prefactor is recovered36

Dm
def � gdeffdefa2�̄def. �14�

2. Dynamic calculation

A way to avoid the difficulties encountered using static
methods, which require a perfect knowledge of the correla-
tion factor and of the saddle-point positions, is to calculate
directly the diffusivity, i.e., at the same time the energy bar-
rier and the prefactor. This can be achieved by performing
molecular-dynamics calculations at different temperatures in
a system which contains the point defect under study. During
the self-diffusion process, the square displacement at tem-
perature T is related to the diffusivity via the Einstein’s law

�
i=1

N�1

�ri�t� − ri�0��2 � 6Ddef�T�t , �15�

where t is the simulation time, ri�t� is the atomic position of
atom i, and Ddef�T� is the diffusivity coefficient defined in
Eq. �1� which according to Eq. �11� follows an Arrhenius
behavior. The numerical protocol used to calculate Ddef�T�
from dynamical simulations will be detailed in Sec. III.

C. Choice of the Si potential

In the literature, there are many interatomic potentials for
Si which have been developed to tackle different physical
quantities. Unfortunately, in most cases they have been de-
veloped without paying special attention to the point defects.
A nice review which discusses critically the abilities of vari-
ous empirical potentials to account for the energetic charac-
teristics of silicon was published by Balamane et al.37 We
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present here a brief complement of this review concerning
the formation energy of the most common point defects
known in silicon: the single vacancy �located on a given site
or split between two� and the various possible interstitials
�tetrahedral, hexagonal, �110 dumbbell and �110 extended
dumbbell, see Fig. 1� for three of the most used potentials
�SW,29 Tersoff,38 and one environment-dependent inter-
atomic potential �EDIP� �Ref. 39��. We have not included
other mechanisms such as concerted exchange5 because
its migration energy barrier was found to be very high
��8 eV�, at least with the SW potential.4 The formation
energies were calculated using systems of 512�1 atoms �−1
for vacancies and +1 for interstitials� in cubic simulation
boxes of sizes of 21.72 Å. The formation energy of the va-
cancy or the �110 extended dumbbell interstitial is obtained
by equilibrating a system containing the considered point
defect at high temperature ��1200 K�, which is then
quenched at 0 K by constrained molecular dynamics. In the
case of the split vacancy, the relaxation is performed by
keeping fixed the position of an atom at the saddle point on
the path diffusion and some atoms at �10 Å from the point
defect. The other point defects �dumbbell, tetrahedral, and
hexagonal interstitials� were directly located at a crystal site.

We present in Table I the formation energies of the point
defects the most currently found in the literature. All these
defects, including the hexagonal interstitial, are found either
stable or metastable within our calculations �relaxation at 0
K by constrained molecular dynamics�, except the splitted
vacancy which is unstable but is shown here in relation with
its saddle-point character during vacancy diffusion. Results
are compared to those obtained by ab initio methods and
experimental values when available.

The first important information that one can get from this
table is the unability of the Tersoff potential to stabilize the

vacancy with respect to the split vacancy. The SV corre-
sponds to the diffusing atom occupying the transition state
for vacancy migration. According to the first-principles cal-
culations performed by Centoni et al.,46 this position should
be unstable for a neutral vacancy. The EDIP potential leads
to a somehow intermediate situation in the sense that one
recovers the stability of the vacancy but the SV is now meta-
stable instead of being a saddle point; the saddle-point posi-
tion being found between the unsplit and split situations. For
these reasons we decided to use in this work the SW poten-
tial, even though it overstabilizes the vacancy with respect to
the different interstitials when compared to ab initio values.
On the other hand, the preferential creation of vacancies in-
stead of interstitials is not a peculiarity of the SW potential
but a more general trend of the empirical potentials, which
contrasts to the ab initio methods. This is not, as can be
thought, due to the unability of empirical potentials to ac-
count for Jahn-Teller distortion24 around the vacancy because
this effect would still lower the vacancy formation energy
and enhance its stability.

III. SELF-DIFFUSION IN BULK SILICON
USING SW POTENTIAL

A. Equilibrium defect concentration:
Formation energy and entropy

As already mentioned, for the SW potential the formation
energy of a vacancy is lower than the formation energies of
the interstitials �see Table I�. The lowest energy for intersti-
tials corresponds to the �110 extended dumbbell, which is a
pair of atoms occupying a single site of the original lattice
and which extends to two nearest neighbors �see Fig. 1�.6 In
the following, we will only consider the vacancy and the

TABLE I. Formation energy of silicon point defects �vacancy V, split vacancy SV, tetrahedral interstitial
TI, hexagonal interstitial HI, �110 dumbbell interstitial DI, and �110 extended dumbbell interstitial EDI�,
calculated using two parametrizations of the SW potential �Refs. 29 and 37�, the Tersoff �Ref. 38� and EDIP
�Ref. 39� potentials, ab initio methods, and experimental data.

Si
V

�eV�
SV

�eV�
TI

�eV�
HI

�eV�
�110 DI

�eV�
�110 EDI

�eV�

SW �Original� 2.66 3.16 5.01 6.55 4.44 3.65

SW �Balamane� 2.83 3.80 5.29 6.83 4.48 3.92

Tersoff 3.70 3.54 3.60 4.64 4.43 3.85

EDIP 3.23 3.82 4.05 4.16 3.40 3.51

ab initio 3.49,a 3.53b 5.10c 3.80c 3.30,d 3.27e

Experimental 2.40,f 2.8,g 3.6h,i,j 3.12k

aReference 15.
bReference 17.
cReference 40.
dReference 20.
eReference 41.
fReference 42.
gReference 43.
hReference 1.
iReference 3.
jReference 44.
kReference 45.
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�110 extended dumbbell interstitial which appear with the
highest concentrations. All other defects, with lower concen-
trations, will be neglected. Before concluding about the re-
spective concentrations of vacancies and interstitials in equi-
librium, it is necessary to calculate the vibrational formation
entropy. Following the method described in Sec. II A we
calculate the local phonon densities of states in the perfect
and defective systems including either a vacancy or an �110
extended dumbbell interstitial. The results are shown in Fig.
2 where the vibrational density of states is averaged on the
sites close to the defect, which corresponds to roughly three
shells around the defect �ZV=40 and ZI=46 sites for vacancy
and �110 extended dumbbell, respectively�.

Although it is not easily seen from the comparison of the
three densities of states, the calculation of their average fre-
quencies �Eqs. �8� and �9�� reveals that the introduction of
the defects induces a shift toward lower frequencies �̄V

=11.0 THz and �̄I=11.3 THz with respect to perfect bulk
�̄0=11.4 THz. The larger shift in the case of vacancies can
be related to the existence of larger zones with a tensile
stress in the former and compensating zones with a compres-
sive stress in the latter. One then expects an enhanced vibra-
tional formation entropy for the vacancy.47 This is confirmed
by performing either the full calculation using Eq. �7� which
gives �Sf ,vib

V =4.3kB and �Sf ,vib
I =2.3kB or the average fre-

quencies and Eq. �10� which leads to �Sf ,vib
V �4.3kB and

�Sf ,vib
I =1.7kB. Taking also into account the configurational

contribution to the formation entropy, we obtain a total for-
mation entropy of �ln 1+4.3�kB=4.3kB for the vacancy and
of �ln 6+2.3�kB=4.1kB for the interstitial. It enhances the
stability of the vacancy with respect to the interstitial at all
temperatures. These values compare fairly well to those ob-
tained by Sinno et al.28 using molecular simulations at high
temperature and the same SW potential who find �Sf ,vib

V

=4.0kB and �Sf ,vib
I =1.6kB. Comparison to other works in the

literature is made difficult because most of them use an in-
direct method to calculate the formation entropy from other
contributions, for example, using the SW potential and a dif-

ferent procedure: Maroudas and Brown7 and Sinno et al.28

reported values between 2kB and 8kB for the interstitial. In
the case of interstitials, Tang et al.40 use a tight-binding
model to calculate the formation energy �Ef

I, the migration
energy �Em

I , and prefactor Dm
I and estimate the formation

entropy �Sf
I �11.2kB by fitting experimental values. Using

local harmonic approximation and density-functional theory
�DFT�-based calculations Blochl et al.13 estimated the forma-
tion entropy of vacancies to be of the order 9kB. As a con-
clusion, from the point of view of the formation energy and
entropy, the vacancy is more stable than the interstitial what-
ever the temperature, but the relative stability decreases
when T increases.

B. Individual atom diffusivity: Migration
energies and prefactors

The calculations have been performed using molecular
dynamics at different temperatures on systems containing ei-
ther 511 atoms �vacancy� or 513 atoms �interstitial� in a cu-
bic box. The thermal-expansion coefficient � was evaluated
by performing constant pressure runs in a defect free system
of 512 atoms at zero pressure and a temperature range going
from 0 to 1600 K. We find an almost constant value of �
=3.81	10−6 K−1 for temperatures between 0 to 700 K and a
linear dependence at higher temperatures �=4.25
	10−6 K−1–6.76	10−10 K−2T.

First the system has been equilibrated at different tem-
peratures in the canonical ensemble �NVT� from 800 to 1400
K for a vacancy and from 1000 to 1500 K for an interstitial,
during 0.1 ns using a time step of 2 fs. In order to obtain two
independent sets of data for each defect, two runs with dif-
ferent random numbers sets have been performed during the
NVT equilibration of the system. Then, the dynamics has
been continued in the microcanonical ensemble �NVE� dur-
ing 20 ns to accumulate statistics of the square displace-
ments, from which the diffusivity Ddef�T� has been calculated
using Eq. �15�. The values of Ddef�T� for the different tem-
peratures have been plotted as a function of 1 /T �see Fig. 3�
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FIG. 2. Projected vibrational DOS averaged on the sites close to
the defect �i�Vdef� for a system containing either a vacancy
�dashed line� or an �110 extended dumbbell interstitial �thin line�.
The DOS for a perfect system �bold line� is also shown. The curves
have been shifted for the sake of clarity.
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FIG. 3. Arrhenius plot of the diffusivity coefficient Ddef�T� for
the vacancy �squares� and the interstitial �circles�, from which we
extract the migration energy �Em and prefactor Dm.
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in order to extract the migration energy �Em and the prefac-
tor Dm.

The migration energies and prefactors obtained using this
procedure are summarized in Table II. For comparison we
also report the static migration energy in the case of vacan-
cies and static prefactors for vacancies and interstitials cal-
culated using Eq. �14� and correlation factors taken from
Ref. 9. As can be seen, the latter estimation gives the right
order of magnitude �a few 10−3 cm2 /s� but is too crude to
distinguish both mechanisms. Moreover, all these values are
in good agreement with other results in the literature and
with experimental results.49,50

From these results, it appears that the diffusivity mediated
by either vacancies or interstitials obeys the well-known
compensation law51 according to which the prefactor some-
what compensates the diffusion barrier. As a consequence, it
is reversed as a function of temperature. At T
2500 K the
vacancy migrates faster than the interstitials and slower at
T�2500 K.

C. Total self-diffusion

The previous analysis of the various contributions sug-
gests that two different behaviors could exist depending on
temperature. At low temperature, it is clear that self-diffusion
is mediated by vacancies since they are more numerous and
faster than interstitials. At high temperature the situation is
more intricate since the stability of the vacancy with respect
to interstitial decreases, the latter migrating now faster, lead-
ing to a competition between both mechanisms. In order to
determine whether this competition should even lead to a
reversal at sufficiently high temperature, it is necessary to get
the overall dependence in temperature of the self-diffusion
coefficient. To this aim, we have to combine both activation
entropic and energetic contributions

Ddef�T� = exp��Sa
def

kB
�exp�−

�Ea
def

kBT
� , �16�

where the activation self-diffusion energy and entropy are
given by

�Ea
def = �Ef

def + �Em
def, �17�

�Sa
def = �Sf ,vib

def + �Sf ,conf
def + kB ln Dm

def

= �Sf ,vib
def + �Sf ,conf

def + �Sm,vib
def + kB ln gdeffdefa2�0

def.

�18�

These activation energetic �Eq. �17�� and entropic contri-
butions �Eq. �18�� to the self-diffusion coefficient are derived
from the values of the formation, migration, and configura-
tion components calculated in Sec. II C, III A, and III B and
summarized in Table III:

�i� Vacancy �Ea
V=3.09 eV, �Sa

V=−2.17kB.
�ii� Interstitial �Ea

I =4.49 eV, �Sa
I =−0.46kB.

The resulting behaviors of the vacancy and interstitial
self-diffusion coefficients as a function of 1 /T are shown in
Fig. 4.

As can be seen, the two curves cross at very high tem-
perature, revealing a transition from a vacancy-mediated dif-
fusion at low temperature toward an interstitial-mediated one
at high temperature. The critical temperature equals

Tc =
�Ea

V − �Ea
I

�Sa
V − �Sa

I . �19�

TABLE II. Migration energy and diffusivity prefactor Dm for a single vacancy and a single interstitial.
SW refers to calculations using the Stillinger-Weber potentials �original parametrization� and TB to those
using a tight-binding formalism.

Si
Em

V

�eV�
Em

I

�eV�
Dm

V

�cm2 /s�
Dm

I

�cm2 /s�

SW �dynamic� this work 0.43 0.84 1.53	10−3 1.05	10−2

SW �static� this work 0.49 4.19	10−3 4.21	10−3

SW 0.43,a 0.46b 0.90,a 0.94b 1.50–1.70	10−3 a,b 1.60–1.76	10−2 a,b

TB 0.10c 1.37c 1.18	10−4 c 1.58	10−1 c

ab initio 0.40d 0.45e 3.14	10−3 d 5.18	10−3 e

Experimental 0.40–1.40f

aReference 48.
bReference 28.
cReference 40.
dReference 26.
eReference 27.
fReference 49.

TABLE III. Summary of the formation and migration contribu-
tions calculated with the SW potential for the vacancy and the in-
terstitial. In the third column is given the difference between the
two defects.

Vacancy Interstitial Vac.-Int.

�Sf ,conf
def �kB� 0 1.79 −1.79

�Sf ,vib
def �kB� 4.30 2.30 2.00

kB ln Dm
def�kB� −6.47 −4.55 −1.92

�Ef
def �eV� 2.66 3.65 −0.99

�Em
def �eV� 0.43 0.84 −0.41
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Such a behavior is in qualitative agreement with the ex-
perimental observations which also predict a vacancy-
mediated mechanism at low temperature and an interstitial-
dominated one at high temperatures.31,49,52–54 Unfortunately,
our calculations are not able to reproduce the rather low or-
der of magnitude of the experimental transition temperature
�1200 K�, since the Eq. �19� leads to an completely overes-
timated value of 9500 K.

This crude overestimation can be due to both energetic
and entropic contributions. Indeed, it has already mentioned
that the SW potential tends to underestimate the formation
energy of vacancy, which according to Eq. �19� might in-
creases Tc by a factor of 2–3. But this is not sufficient to
account the difference of 1 order of magnitude found here.
One has then to conclude that it is the difference between the
entropic contributions of the two mechanisms which is un-
derestimated in our calculation. A look at Table III reveals
that the differences in migration and vibrational contribu-
tions almost perfectly compensate so that the total difference
in entropy mainly comes from the configurational term. This
is somewhat consistent with what would be guessed from the
simplified Einstein formulation of Eq. �18�

�Sa
V − �Sa

I � �Sconf
V − �Sconf

I + kB ln	5

6



+ �3Z − 1�kB ln	 �̄I�

�̄V�
 , �20�

taking for simplicity the same Zdef=Z for both defects. If in
addition one assumes that the average frequencies at the
saddle point do not differ too much, one finds

�Sa
V − �Sa

I � �Sconf
V − �Sconf

I − 0.19kB = − 1.98kB.

The origin of our disagreement with the experimental
temperature then remains to be elucidated. However, even
though the crossover temperature is widely overestimated in
our calculation this temperature dependence is a sign of the
reliability of our potential. Indeed, from Eq. �19�, it appears
that the existence of a crossover requires for the differences

in activation enthalpies and entropies to have the same sign.
Since all calculations agree to find a negative sign for the
entropy difference, this requires for the energetic term to
follow the inequality

�Ea
V 
 �Ea

I , �21�

which is clearly not the case for the values issued from ab
initio calculations.15,16,20,26,40,41,55,56

IV. DIFFUSION UNDER EPITAXIAL STRAIN

We present here a study on the effect of a biaxial stress on
the different quantities that participate in the calculation of
the self-diffusion coefficients. A biaxial compressive or ten-
sile stress mimics the stress suffered by a thin Si film depos-
ited on a substrate with, respectively, a smaller or larger lat-
tice parameter.

We suppose that the �100 directions of the crystal are
aligned along the x, y, and z axis of the simulation box.
Lateral deformations �x=�y �from −4% to +4%� are applied
isotropically along the �100� and �010� directions. Note that a
deformation of +4% corresponds to a dilation of Si up to the
lattice parameter of Ge. As we have used periodic boundary
conditions along the three spatial directions to simulate a
deposited film with a free surface in the z direction with a
null component of the stress tensor �zz for each biaxial de-
formation �x=�y we apply a deformation �z=−2� / �1−���x.
The Poisson coefficient � calculated for a perfect system has
been used for the systems with defects. It has been deter-
mined at two temperatures �0 and 1000 K� in cubic simula-
tion box with 512 atoms by performing biaxial and uniaxial
deformations while relaxing in the perpendicular direction.
In Fig. 5 we show the deformation �z which cancels the
stress �zz when applying a biaxial deformation �x=�y and the
values of �z=�y that cancel the stresses �yy and �zz when
applying a uniaxial deformation �x. We consistently found
the same Poisson ratio �=0.34, which compares fairly well
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m
2 s-1
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FIG. 4. Variation of the total diffusion coefficient as a function
of the inverse of temperature for the vacancy and interstitial defects.
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- 1.01 ε
x

ε
y = ε

z= - 0.34 ε
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FIG. 5. �z deformation which cancels the stress in the z direction
when applying biaxial deformations �x, �y �diamonds� and �y,z de-
formation which cancels the stress in the y ,z direction when apply-
ing a uniaxial deformation �x at 0 K �circles�. The closed symbols
are the results at 0 K and the open ones at 1000 K.
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to the experimental value of �=0.28.57–59 As shown in Fig. 5,
the Poisson ratio is almost independent of the temperature
even though a very small deviation is observed for positive
strain.

The formation and migration energies, the formation en-
tropy, and the diffusivity prefactor associated to one or other
point defects are calculated here using the same methodol-
ogy as in the unstrained case. The variations of these four
contributions to the total self-diffusion coefficient as a func-
tion of the deformation are shown separately in Fig. 6.

A. Equilibrium defect concentration: Formation energy
and entropy under biaxial strain

Due to the anisotropic character of the biaxial strain ap-
plied, the defect orientation has to be taken into account
when calculating the equilibrium defect concentrations �for-
mation energy and entropy� under biaxial strain. In the case
of a vacancy, no geometrical degeneracy is expected since
the SW potential does not account for Jahn-Teller effect. The
situation is different for �110 extended dumbbell interstitial
which is an oriented point defect. We have then considered
two types of �110 extended dumbbell interstitials, depend-
ing on that they are oriented in �110� and �101� planes. In the
next, such interstitials are called �110� and �101� extended

dumbbell interstitials to differentiate orientation.
In the energetic or entropic balances involved in the cal-

culation of the formation quantities, the atom which is added
or removed has been taken from or expelled to a site belong-
ing to a bulk �reservoir� which undergoes the same deforma-
tion as the film.

Concerning the energetic part, the overall effect of the
biaxial strain is to reduce the formation energy of the inter-
stitial whatever its orientation and to increase that of the
vacancy �see Fig. 6�a��. This leads to a crossover at 2.5%
which reverses the respective stabilities of the vacancy and
of the �101� extended dumbbell interstitial, which is pre-
ferred to the �110� one under tensile strain.

These behaviors are quite natural since the creation of an
interstitial �respectively, a vacancy� induces locally a com-
pressive �respectively, tensile� stress which is reduced �re-
spectively, increased� under dilation. The consequence is that
it is easier to create an interstitial than a vacancy in a dilated
lattice.

The effect of strain on the entropic part is even more
complicated �see Fig. 6�b��. For both the vacancy and the
�101� interstitial, a compressive stress enhances the forma-
tion entropy while almost no effect is observed under a ten-
sile stress, whereas for the �110� interstitial the formation
entropy continuously increases from −3% to +4%. These
different behaviors are closely related to the corresponding
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FIG. 6. Dependence of the �a� formation energy �Ef
def, �b� formation entropy �Sf

def, �c� migration energy �Em
def, and �d� diffusivity

prefactor Dm
def of vacancies and interstitials with the biaxial strain. In �b� the small symbols refer to the high-temperature approximation for

the entropic contributions. The lines correspond to the polynomial laws which fit the various contributions.
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variations of the phonon densities of states. Indeed, a dilation
�respectively, a compression� induces an overall shift of the
modes toward lower �respectively, higher� frequencies,
which means that �̄def continuously decreases from −4% to
+4% for both the perfect and defective lattices �see Fig. 7�.
As we have used a strained perfect system as the reference
system, the variation of the formation entropies follows the
differences between the evolution of the given defect and the
pure system. This is confirmed by plotting, in Fig. 6�b�, the
high-temperature limit of the formation entropy which is di-
rectly related through Eq. �10� to the frequencies of the Fig.
7. As can be seen, this simplified formulation perfectly re-
produces the overall behavior.

B. Individual atom diffusivity: Migration energies
and prefactors under biaxial strain

As can be seen in Figures 6�c� and 6�d�, both the migra-
tion energy and the prefactor present a weak dependence,
which is quasiparabolic for the vacancies �with a maximum
for unstrained Si�, whereas it is slightly decreasing from
−4% to +4% for the interstitials. These behaviors somewhat
increase the difference between the two defects on the com-
pressive side. Once again, it is tempting to relate the behav-
ior of the prefactor �Fig. 6�d�� to that of �̄def through the
high-temperature development �Eq. �14��. From Fig. 7, it can
be seen that, whatever the case �perfect lattice, vacancy, in-
terstitial�, �̄def decreases from compression to dilation, as ex-
pected from the associated shift toward lower frequencies of
the corresponding vibrational densities of states. The same
argument can be applied to understand why, for a given de-
formation, �̄V
�̄I, in qualitative agreement with the exact
calculations.

C. Total self-diffusion under biaxial strain

In order to more easily analyze the dependence of the
self-diffusion constants for the two oriented interstitials
�which can be separated at least in what concerns their for-

mation part� and the vacancy versus the temperature and the
strain, we have fitted the variation of each contribution using
a polynomial procedure in the temperature range �800–1600
K�. The dependence with the biaxial strain for T=1200 K is
shown Fig. 8. The first observation is that the strain depen-
dence of the self-diffusion coefficient is opposite for the va-
cancy and interstitial mechanisms: it decreases from com-
pression to dilation for the vacancy, whereas it decreases in
the same time for the interstitial. A crossover occurs at this
temperature at a deformation of about 3%, which means that
diffusion is vacancy mediated below this deformation al-
though the �110 extended dumbbell oriented along the �101�
direction prevails beyond. One obviously recover that, as
already mentioned in Sec. III C, the diffusion mechanism at
zero deformation is vacancy mediated at this temperature. In
addition, one observes a reorientation of the dumbbell from
the �110� to �101� direction, when strain changes from com-
pressive to tensile character. The behavior of the total diffu-
sion coefficient is presented as thin dotted lines from 800 to
1600 K in Fig. 8. The transition from vacancy toward �101�
dumbbell mechanism corresponds to the slope change which
is marked with full points. As can be seen, the crossover is
observed at each temperature at about the same value of
tensile strain.

Although the range of absolute temperatures �800–1600
K� displayed above seems to be rather large, it remains rather
narrow if one keeps in mind that our potential overestimates
by 1 order of magnitude the transition temperature at which
self-diffusion changes from vacancy toward interstitially me-
diated at zero strain �Tc=9500 K�. In order to ensure the
generality of our results, it is then more suited to consider
scaled temperature T /Tc, in which case the range explored
here becomes rather narrow �0.08–0.16�. In order to access a
wider range in T /Tc, we have interpolated the strain depen-
dence of the formation and migration energetic and entropic
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contributions using polynomial functions. The corresponding
fits are displayed in Fig. 6. From these laws, we have been
able to compare the respective efficiencies of the three
mechanisms �vacancy, �101�, and �110� oriented extended
dumbbells� and then to derive analytic expression of the cor-
responding transition temperatures from one to the other
mechanism by using extensions of Eq. �19�. The correspond-
ing transition lines are exhibited in Fig. 9 together with the
domains of existence of the different mechanism. As can be
seen, the situation on the tensile side is rather complex. One
obviously recovers that at sufficiently low temperature, self-
diffusion is governed by vacancies up to a critical strain of
about 3% modifier �Si-Ge size mismatch� beyond which it is
mediated by �101� oriented extended dumbbells. Then, for
T /Tc�0.65, the extended dumbbells change their orientation
toward �110� and become more and more predominant with
respect to vacancies up to T /Tc=0.65, beyond which they are
the only mechanism whatever the tensile strain. The situation
on the compressive side is simpler. Indeed, the diffusion is
found to be vacancy mediated whatever the compressive
strain for T /Tc
1 and governed by interstitials oriented in
the �101� direction beyond. A simple way to summarize these
results should be to say that although self-diffusion in bulk
unstrained Si is governed by vacancies at low temperature, it
becomes mediated by extended dumbbell under a critical di-
lation which can be either from thermal �increasing tempera-
ture� or from strain �biaxial stress� origin. Obviously, the
absolute value of this critical dilation is potential dependent
and it is overestimated by the SW one.

Finally, let us remark that our conclusions concern diffu-
sion averaged in all directions. One can wonder on the an-

isotropy character of the migration contribution when it is
calculated perpendicular or parallel to the biaxial deforma-
tion. To answer this question, we have analyzed separately
the different components of the squared displacements at the
limiting values of strain �4%. Under biaxial compressive
strain �−4%�, we have found that for interstitials they are
almost equal in all directions whereas migration mediated by
vacancies �dominant mechanism� is found to be �17%
larger in the direction perpendicular to the applied strain.
Under tensile biaxial strain �+4%�, self-diffusion is reduced
in the direction perpendicular to the applied strain by a factor
of 27% for the interstitials �dominant� and 15% for the va-
cancy one.

V. CONCLUSION

We have developed here a protocol to consistently calcu-
late all the contributions to the self-diffusion coefficient in
bulk Si using a unique interatomic potential. In this context,
the Stillinger-Weber potential appeared the best suitable
compromise. Using this potential, we have calculated the
formation and migration energies and entropies for the va-
cancy and extended dumbbell interstitial which are the most
stable defects for the SW potential. Our main result is that
self-diffusion is essentially vacancy mediated at low tem-
perature, whereas the interstitials should play a more impor-
tant role at increasing temperature, in qualitative agreement
with experimental observations. We have shown that a pro-
cedure involving only static calculations is able to reproduce
the main features of the diffusion.

Using the same protocol, we have studied the effect of a
biaxial strain on the self-diffusion. We have thus been able to
build a general �T ,�� diagram which displays the domains of
existence of the different mechanisms as a function of strain
and temperature. The main features of this diagram are the
following. At sufficiently high temperature, self-diffusion is
mediated by the extended dumbbell interstitial, the orienta-
tion of which is driven by the sign of the strain. At lower
temperature, it is governed by vacancies up to a critical di-
lation beyond which the extended dumbbell interstitial be-
comes the predominant mechanism. This critical dilation cor-
responds to Si-Ge size mismatch. Therefore, experimental
conditions where a Si film grows pseudomorphicaly to a Ge
substrate are expected to completely change the diffusion
mechanism in the film with respect to bulk Si from vacancy-
to interstitial-mediated diffusion. This last result should have
important consequences when modeling nanoelectronic pro-
cesses based on SiGe within TCAD-type codes.60
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